Skip to main content

Insidious Air: Defogging Air Pollution and its Pernicious Effects

By Zack Griggy, San Marin HS

           We all know that smoking is harmful to us, but what if the very air we breathe also contains toxic chemicals? The truth is the air we breathe contains numerous chemicals that have harmful effects on both humans and the environment. As a result, the issue of pollution has been a very important and significant problem. It has driven us to invest in green fuels, manufacture in more eco-friendly ways, and cut down on greenhouse gas emissions. However, the problem of air pollution still remains somewhat untouched. Although emissions have been significantly reduced from vehicles and manufacturing plants, the problem as a whole remains.  Air pollution is known to cause numerous issues for the environment and humans, but particulate matter and ozone pose more immediate threats to human health.
           Particulate matter consists of extremely small particles that are a result from burning and can have huge impacts on lung health. Particulate matter, if small enough, can breach through the body's defenses (the nose, mucus in alveoli, etc.) and even enter the bloodstream. Clearly, this can cause catastrophic problems for human health, such as decreased lung function, irregular heart beat, heart attacks, or even premature death for people with lung or heart disease. In places like the Bay Area, where there is an abundance of hills, which can trap pollutants in small areas and with larger concentrations, pollution can easily accumulate. To make matters worse, particulate matter also has harmful effects to the environment, which include haze, acidification of water basins, depletion of nutrients in soil, etc. Clearly, particulate matter doesn't just affect humans. Through depleting the nutrients in soil, particulate matter is capable of killing many sensitive plants and crops. In addition, freshwater acidification known to alter flora and fauna in affected ecosystems via increased acidity and toxicity.
             Ozone is an essential, but toxic, gas. In the stratosphere, ozone forms a protective layer that blocks UV radiation, and allows us to live on land. But the ozone layer and the stratosphere are both a considerable distance away from the Earth's surface. When ozone is at or near Earth's surface, it poses a threat to organisms that use that air. Ozone can affect entire ecosystems, beginning with plants. Ozone exposure may cause plants to have decreased photosynthesis, slowed growth, and increased risk of harm from disease, insects, storms, etc. But remember, in an ecosystem, damages at the bottom of the food chain can easily work its way up the food chain. Thus, damages from the plants can affect the entire ecosystem, causing a lack of biodiversity, reduced habitat quality, etc. However, in the case of humans, ozone can be much more pernicious. Humans exposed to smaller amounts of ozone or over a shorter period of time may have decreased lung function, airway inflammation, coughing, painful breathing, increased number of asthma attacks, increased risk of death from respiratory disease, shortness of breath, etc.
            These pollutants, and their effects, might seem unpreventable, but really it is the opposite. Both particulate matter and ozone are either emissions, or formed from other emissions. So, we return to the question: how do we prevent the effects of these pollutants? The answer: cut down on emissions. For example, particulate matter is often released during burning, especially burning wood or coal, so if we curtail our burning of wood and coal, we can reduce the effects and quantity of particulate matter. The choice of whether or not to poison our own air rests with everyone. Be sure to make the right choice

1. Sitting by a Cozy Fire - Wood Burning, Air Quality, and Your Health (from notes taken during seminar)
2. What's Getting into Your Lungs? The Effects of Smoke, Ozone, Allergens, and More (from notes taken during seminar)

Post a Comment

Popular posts from this blog

"Gnashing, Gnawing, and Grinding: The Science of Teeth" - An Interview with Tesla Monson of UC Berkeley

by Shoshana Harlem, Terra Linda High School

Dr. Tesla Monson studies mammals, especially their skulls and teeth. She is a researcher at UC Berkeley and has a BA in cultural anthropology, an MA in biological anthropology, and PhD in Integrative Biology. 

1. What made you want to study mammals?
Growing up in Washington State, I was always really interested in biological life, and particularly animals and plants. When I first learned about Paleolithic cave art in my undergraduate anthropology class, which is some of the oldest and most beautiful art, dated to more than 30,000 years ago, I became fascinated with the seemingly timeless question, "What makes us human?", "What makes me, me?, "What makes humans unique from other animals?" And "What makes non-human animals different from each other?" Because these questions are focused on trying to place humans within the context of evolution and life on this planet, and because humans are mammals, I have been …

All About Lysosomes

by Angel Zhou, Branson School

Lysosomes, discovered and named by Belgian biologist Christian de Duve, who eventually received the Nobel Prize in Medicine in 1974, are membrane-enclosed organelles that function as the digestive system of the cell, both degrading material taken up from outside the cell and digesting obsolete components of the cell itself. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. In their simplest form, lysosomes are visualized as dense spherical vacuoles, but they can display considerable variation in size and shape as a result of differences in the materials that have been taken up for digestion. Lysosomes contain an array of enzymes capable of breaking down biological polymers, including proteins, nucleic acids, carbohydrates, and lipids.

The lysosome’s enzymes are synthesized in the rough endoplasmic reticulum. The enzymes are released from Golgi apparatus in small vesicles which ultimately fuse with acidic vesicles ca…

Bacteria, Botulism, and Beauty

--> By Talya Klinger, MSS Intern
What do foodborne illnesses, neck dystonia treatments, and celebrities’ beauty regimens have in common? Clostridium botulinum, baratii, and other species of Clostridium bacteria produce all of the above and more. These seemingly innocuous, rod-shaped bacteria, commonly found in soil and in the intestinal tracts of fish and mammals, produce one of the most deadly biological substances: botulinum toxin, a neurotoxin that intercepts neurotransmitters and paralyzes muscles in the disease known as botulism. Nonetheless, botulinum toxin isn’t all bad: this chemical not only protects the bacteria from intense heat and high acidity, but it makes for an effective treatment for medical conditions as wide-ranging as muscle spasms, chronic migraines, and, yes, wrinkles. 

Clostridium botulinum and similar bacteria can make their way into the human body in a number of ways. Wounds infected with Clostridium botulinum or spores ingested by infants can lead to …