Wednesday, March 22, 2017

Mathematical Models Help Tell the Future of Animals That Are Living in the Ocean

by Shoshana Harlem, Terra Linda High School

The future of animals in the ocean is unknown. But,
mathematical models can help scientists predict 
information about the circumstances of animals lives in the ocean.

The future of our oceans and the future of the animals living is unpredictable. This is where scientists use math to figure out what is going to happen. Changes in temperature affect animals living in the water. The temperature of the water determines which animals will do well in the water and thrive, and which will struggle, die, and become extinct. There is a range of temperatures an organism can survive in. Each organism has a thermal death point. Certain temperature ranges help an animal reproduce and have more of one organism. There is a range in which species can function which is at or near optimum. When the species are not at or near their optimum point, it is a sign of physiological stress which can cause problems in the organism.
Scientists, including graduate students, researchers, and post-docs in the life sciences and mathematics, often use mathematical models. A mathematical model is a complex model that represents relationships in mathematical form that is used to study the behavior of a certain organism to make reasonable conclusions. Mathematical models can solve problems relating to biology and many other fields.
Scientists, such as Alma Yesenia Ceja who is
speaking at the next seminar, studies and will
talk about what data she finds through mathematical
models about the future lives of crabs.

To learn more about how scientists use math to predict the future of crabs and other animals, come to the Marin Science Seminar in room 207 on Wednesday, March 29, 2017. Alma Yesenia Ceja of the Romberg Tiburon Center for Environmental Studies and SFSU will be speaking. Join us and learn!


Monday, February 13, 2017

Interview with Marine Biologist/Veterinarian Claire Simeone of Marine Mammal Center

Claire Simeone DVM at work
by Kavi Dolasia, Tamalpais High School

Claire Simeone, DVM is a Conservation Medicine Veterinarian at The Marine Mammal Center in Sausalito, California, as well as National Marine Fisheries Service in Washington, DC. In addition to taking care of sick marine mammals that come for treatment at the rehabilitation center, she also travels nationally to respond to Unusual Mortality Events, develops international training programs, and works on the Marine Mammal Health Map, which provides a centralized reporting system for marine mammal health data.

To learn more about her profession, we interviewed her.

1. How did you first get involved in marine biology and the field of veterinary?
I knew I loved both animals and science from an early age. Biology was one of my favorite subjects in high school, and I decided to study neurobiology in college. I started as a volunteer at a veterinary clinic in high school, and continued to work as a veterinary technician through college and veterinary school.

My Dad was an environmentalist, and gave me a deep respect for wildlife and the ocean. I began to be exposed to many different careers that veterinarians could have, and realized that I could combine my love of science and wildlife conservation in a job. My career has been a dream come true.

2. How was your experience training with SeaWorld San Diego?

Much of what I was taught about marine mammal medicine came from my mentors at SeaWorld San Diego and the Navy Marine Mammal Program.SeaWorld has been in the media spotlight recently, and there are a variety of opinions about marine mammals in captive care. In my experience, the animals receive the highest quality medical care, and each person that works with them is incredibly invested in caring for these animals in the best way possible. Medicine is continually advancing, and one of the best parts of my job is that I get to be a part of the pioneering science that improves the health of marine mammals everywhere.

3. What is your favorite "project" you have worked on within the Marine Mammal Center?

One of the most exciting projects has been to be a part of Ke Kai Ola, our hospital for endangered Hawaiian monk seals. We work with partners like the National Marine Fisheries Service and the Coast Guard to rescue young animals that would otherwise not survive on their own, and rehabilitate them in our hospital. We use the knowledge we’ve gathered over 40 years of caring for other seals like elephant seals and harbor seals, and apply it to working with this rare species. Since our hospital opened in 2014, we have rehabilitated more than 1% of the entire population. The best news is that during their last estimate, it looks like the population is starting to increase! This is an amazing way for me to be a part of a project that is literally saving a species.

4. What are the best parts of your job? What are the worst?

There are so many amazing parts of this job! First, every day is different. I never know if I’ll be performing surgery in the hospital, or presenting at a scientific conference, or examining a healthy seal in the wilds of Alaska.

Second, I’m lucky to be able to work with such interesting animals. In addition to being entertaining characters, they’re always teaching us something new about themselves, or the ocean. Third, I love being able to share our science and discoveries with the world. So many of the things my fellow scientists are working on are fascinating, and I am thankful that I’m in a position to share this with so many people.The most difficult part of my job is dealing with the realities of working with sick animals and a sick ocean. We can’t save every animal, and sometimes working with so many sick animals can be sad and overwhelming. That’s why I work to balance negativity with positive conservation stories.

5. Why are you so passionate about ocean conservation?

As we become a global society, our Earth is becoming a smaller place. It used to feel as though our oceans were limitless, with unending stocks of fish. We are now acutely aware that we humans have a significant impact on the ocean. Many of the patients we see at The Marine Mammal Center are impacted by human actions – entangled in ocean trash or struck by a ship.But just as we have the capacity to have a negative impact, we also have the capacity to save our oceans. Marine mammals hold secrets about human health, and the health of the ocean. I feel a responsibility to share these secrets so that every person has the information they need to conserve this planet we share.

6. What advice would you give to someone who aspires to work in a similar field?
It’s a big job to save the ocean! We need lots of people working hard on many different projects. My biggest advice would be to stay open-minded about possibilities. I knew I loved biology, but it was a Spanish teacher who suggested I do an exchange during high school, and now I use Spanish when I work on international marine mammal projects. You never know how your skills will come in handy in the future. Get out there and volunteer at places that are doing interesting work. The Marine Mammal Center has a Youth Crew program for students ages 15-18, and allows you to get hands on experience rehabilitating marine mammals.

Learn more at:

Lean more about Claire Simeone at Marin Science Seminar here:

Thursday, February 9, 2017

Interview with Chemical Engineer Eric Stevenson of the Bay Area Air Quality Management District

by Shoshana Harlem, Terra Linda High School

Eric Stevenson is a chemical engineer who works with the Bay Area Air Quality Management District. He helps figure out air quality issues such as how to reduce greenhouse gases. To find out more about his work, we interviewed him.

1. How did you first become interested in being a chemical engineer in the environmental field?

 I was always interested in the environment, even as a child.  As I progressed through school, I had an aptitude for math and chemistry, so chemical engineering seemed the logic choice.

2. What air quality issues are you currently working on? 

Right now, we are working on a rule to reduce risk from air pollutants at facilities throughout the Bay Area to the lowest levels achievable.  In addition, we are also working on a way to regulate and reduce greenhouse gases, first from refineries and then from other high GHG emitting facilities. 

3. How do you think the new presidential administration will impact your organization?
 Luckily, while we interact with EPA on a large number of issues, we do not receive much funding from them and we also have stricter regulations than them.  While I anticipate that the next four years will be difficult, the fact that we're in California should help us weather the potential issues with EPA.

4. What does a typical work day look like for you? Also, what is the best and worst part of your job? 
I go to a lot of meetings and work with my staff to get them what they need to get their jobs done.  I do my best to anticipate issues and problems and plan for successful outcomes.  The people I work with are the best part of the job, as they are dedicated public servants, doing their best to protect the health of Bay Area residents.  The worst part of the job is difficult to define, but it's hard trying to anticipate all of the issues that might come up, and that can make the job more difficult.

5. What advice do you have to people that want to be a chemical engineer in the environmental field? 

 Learn to work with data and listen to what the data are telling you.  Develop your ability for critical thought.

Want to hear more about Eric Stevenson and his job? Come join us on Wednesday, February 15, 2017 at Terra Linda High School from 7:30 PM - 8:30 PM in Room 207!

Monday, January 30, 2017

The Intelligent Sea Lion

The Intelligent Sea Lion
By Shoshana Harlem, Terra Linda High School

The brain of a sea lion!
Can an animal still be a good scientist without thumbs? The answer is yes, because the sea lion is in this exact situation. Although sea lions have no thumbs, they have a big brain. Their brain is about the same size as a chimpanzee brain. They are one of the few mammals besides dolphins, humans, elephants, and whales that have brains that weigh more than 1.51Lbs. Scientists are not sure why the sea lion has such a big brain, but they think that it might be because they have a large body size and those two usually correspond. Other theories have to do with the weightlessness of the marine environment, coping with cold water temperature, or perhaps it is just a random outcome of evolution.
The sea lion’s brain consists of different regions for processing information from their whiskers. A specific, corresponding, area in the brainstem is devoted to each whisker on the sea lion’s nose. The areas in their brain that are responsible for processing touch information from the whiskers and the skin are the thalamus, cortex, and brainstem. Likewise, the human brain has specific areas which correspond to the individual fingers of a person. The whiskers on the sea lion assist with sea lion behavior and sensation. There are certain areas in the sea lion’s brain which are made for processing touch sensations from their flappers and tail. Scientists don’t know a lot about the sea lions cerebral skills. The sea lion has a particular part of their brain called the Bischoff’s Nucleus, which is very well-developed. It is surprising that sea lions have this part of their brain because it is usually found in animals with prominent tails such as kangaroos, raccoons, and whales. But the sea lion’s tail is tucked and small behind its hind flippers.
A sea lion's very important whiskers!
On each side of a sea lion’s face, are 38 whiskers. The whiskers can grow to be eight inches in length and are really sensitive. The sea lion produces more nerve fibers than any other animal in the animal kingdom. Its whiskers can be helpful in many ways too. One way is that they use their whiskers is to spot a fish by looking for changes in the flow of the water. They can find fish that are swimming up to 590 feet away from them. The whiskers can also help a sea lion know the differences between shapes and sizes up to as far as a fraction of a centimeter.
Amazingly, the sea lion’s brain is capable of higher cognitive functioning. A sea lion can play a game of Concentration. Through trial and error, they can match unrelated symbol pairs. They can also recognize signals, which is really useful in the wild. In this way they can find food, and know if someone is their friend or their enemy. Sea lions also have the ability to think logically. The can know that if a=b and b=c, then a=c.
To learn more about why sea lions are such good scientists, come to the Marin Science Seminar at Terra Linda High School in room 207 on Wednesday, February 8, 2017. Claire Simeone DVM of the Marine Mammal Center in Sausalito will be speaking. Join us and learn!