Skip to main content

An Interview With Diara Spain, Ph.D

By Rachael Metzger, MSS Intern

Ocean acidification is an issue becoming apparent in the effects on both sea creatures and humans. Diara Spain, the Associate Professor of Biology at Dominican University, came to Marin Science Seminar to talk to us about her studies in marine invertebrates and the damage ocean acidification is causing them. 

To learn more about Diara Spain and what inspired her studies we conducted an interview:


1. How did you get interested in biology? Is there a time, event, 
or person in your life that inspired you to pursue the study?
I've always been interested in biology, really science in general. I grew up in rural North Carolina and as a kid it was expected that you'd spend most of your free time outside playing with your friends and pets.  One thing that sparked my interest in marine organisms were the summer vacations at the undeveloped beaches in North Carolina. 

2. Why did you specifically decide to focus on functional morphology, locomotion in echinoderms, and the mechanical properties of crustacean exoskeletons? How do studying these subjects help expand your view on the ocean and how humans are affecting it? 
The essence of functional morphology is "function from form", this gives us insight into how biological structures can actually work mechanically or physiologically. I find this compelling, especially when you consider marine invertebrates which have a wide array of morphological features. At first glance locomotion in sea cucumbers and properties of crustacean exoskeletons may seem to have little in common, but both topics are based on skeletal support systems which is my major interest. I've learned quite a bit about different marine habitats as well as how populations size and  species diversity has changed from my studies.

3. What is the most interesting study you have done to date?
I'd have to say my work on locomotion in echinoderms, specifically sea cucumbers. These are very unusual organisms and the average person may not know much about them, but when I describe them it never fails to amaze. My students enjoy watching the time-lapse videos, I actually gave a talk at the seminar several years ago titled "Life in the Slow Lane". My studies on crustaceans are just beginning but I fully expect some interesting stories in the future.

4. How do you hope the ocean will look in 20 years and what are some steps we can take to get there?
The oceans are important for the functioning of our global ecosystem as well as the global economy. I'd like to see a habitat that is healthier for animals (including humans)  to live, play and work. 

An example of a smaller step is decreasing the widespread use of disposable plastics while increasing the usage of recyclable/reusable materials. A much larger step is the approval of ocean friendly policies that support conservation and sustainability while restricting damage and pollutants. 

5. What is your advice to teens and young adults who want to help preserve our oceans and the creatures that live in it? 
The best advice is to become involved, this can be done at multiple levels from local and regional up to globally in a way you feel most comfortable. Every fall there is a International Coastal Cleanup Day, San Rafael's Volunteer Program coordinates people with specific sites locally. Volunteers and donations are also welcome at marine conservation organizations, some focus on a specific animal like sea turtles or dolphins while others focus on a issue such as ocean pollution or habitat restoration. 


Post a Comment

Popular posts from this blog

"Gnashing, Gnawing, and Grinding: The Science of Teeth" - An Interview with Tesla Monson of UC Berkeley

by Shoshana Harlem, Terra Linda High School

Dr. Tesla Monson studies mammals, especially their skulls and teeth. She is a researcher at UC Berkeley and has a BA in cultural anthropology, an MA in biological anthropology, and PhD in Integrative Biology. 

1. What made you want to study mammals?
Growing up in Washington State, I was always really interested in biological life, and particularly animals and plants. When I first learned about Paleolithic cave art in my undergraduate anthropology class, which is some of the oldest and most beautiful art, dated to more than 30,000 years ago, I became fascinated with the seemingly timeless question, "What makes us human?", "What makes me, me?, "What makes humans unique from other animals?" And "What makes non-human animals different from each other?" Because these questions are focused on trying to place humans within the context of evolution and life on this planet, and because humans are mammals, I have been …

All About Lysosomes

by Angel Zhou, Branson School

Lysosomes, discovered and named by Belgian biologist Christian de Duve, who eventually received the Nobel Prize in Medicine in 1974, are membrane-enclosed organelles that function as the digestive system of the cell, both degrading material taken up from outside the cell and digesting obsolete components of the cell itself. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. In their simplest form, lysosomes are visualized as dense spherical vacuoles, but they can display considerable variation in size and shape as a result of differences in the materials that have been taken up for digestion. Lysosomes contain an array of enzymes capable of breaking down biological polymers, including proteins, nucleic acids, carbohydrates, and lipids.

The lysosome’s enzymes are synthesized in the rough endoplasmic reticulum. The enzymes are released from Golgi apparatus in small vesicles which ultimately fuse with acidic vesicles ca…

The Birth of the Universe, through Today's Telescopes

by Sandra Ning, Terra Linda HS

A nebula in the Large Magellanic Cloud. Though nebulae are often the focus of space appreciation in pop culture, the universe encompasses billions more phenomena. (source)
     A story is typically told from the beginning, but oftentimes the universe is an exception. As a society, time is measured in days and nights, hours, minutes, and seconds. But even more so, time is apparent to us through the peachy sunrise of dawn, the angry grumbles of an empty stomach at noon, and the fatigue that settles with the darkness of night. It's hard to imagine any of these things in relation to the universe, with its sleepless planets and nomadic asteroids, all swallowed up in an unimaginably large blanket of space. If the universe is a story, and all the galaxies, comets, and stars its characters, where does it all begin? 
     Luckily, scientists have already delved into the origins of the universe, and have resurfaced with new and exciting insights regarding these qu…