Skip to main content

The Future of Medical Education: Death-Defying Robots

by Claire Watry, Terra Linda HS

This week the Marin Science Seminar introduces a unique presentation on medical education with Rich Fidler PhD MBA and Abi FitzGerald MSN RN of the VA Medical Center and their special guests - robots! These humanlike robots are utilized by medical practitioners at the Simulation Center at the VMCA in San Francisco to learn how to perform a variety of procedures and respond appropriately to different emergency scenarios. 

Rich Fidler is the Director of the Healthcare Simulation which places him in charge of all of the simulation research, education, training, and process evaluations that take place in the entire hospital, including emergency, critical care, surgery, and disaster preparedness. Fidler is also the Co-Director of the Fellowship Program in Advanced Clinical Simulation. Fidler explains this role in the following quote; "I am responsible for ensuring that our advanced fellows are receiving challenging experiences, quality didactic education in statistics, research design, thoughtful data analysis. I also ensure that they will be able to go out to conduct clinical simulations independently." In order to obtain these job titles, Fidler has collected numerous degrees and gone through extensive medical training. 

Read the interview with Rich Fidler below and be sure to attend this weeks's Marin Science Seminar. 

What degrees and training do you have, and how do they relate to each other?

PhD in Physiological Nursing from UCSF--allows me to apply knowledge and principles of physiology to understanding biomedical engineering solutions to clinical problems.
MS in Human Factors Engineering--allows me to understand human-technology interfacing, and allows me to more completely understand the reasons that people have problems operating medical equipment. 
Anesthesia Training--allows me the skill set for airway and physiologic patient monitoring and surgical perspective for a well-rounded clinical practice
Critical Care Training--allows me the experience to provide care for the sickest of hospitalized patients, applying physiology, chemistry, and pharmacology to improving patient conditions.
Primary Care Training--allows me the perspective to understand how diseases evolve over long periods of time, and also allows me to see how patients choose to participate in their healthcare
MBA--having a master's of business administration allows me the knowledge to understand people operating in a system, particularly with skills related to managing people. Frequently, it is important for me to elicit a particular behavior from our staff, but this needs to be done respectfully so that the employees WANT to do a good job.

How did you become interested in the medical field? 

I developed a special interest in healthcare when my grandfather became ill with heart problems while I was young. As early as 8 years old, I would go to spend every evening with my grandfather to try to make him feel better by pushing the fluid out of his legs. From there, I got more interested in why his heart was failing and how I could make it better. I got more interested in cardiac resuscitation after my grandfather had a sudden cardiac death event and we saved him. Then my own father had a series of 3 cardiac arrests which he survived from high quality CPR and early defibrillation, but he eventually died with the fourth cardiac arrest. 

How did you become involved in the Simulation Center?

I have always liked teaching, and I think that learning with your hands is better than someone talking you to death. When I told my father about what I did with simulation, he said, " You can't make a living playing with dolls." I guess I showed that you should do what you like to do, even if your parents don't think it's worthwhile. You have to make yourself, not your parents, happy with your career. The harder stunt is to figure out how to make lots of money doing what you love!

Example of a Simulation Center

What projects have you worked or are you currently working on in the Simulation Center?

Heart monitors.
Disaster evacuation from the hospital in the middle of surgery.
Should we unwire a jaw wired closed or do a cricothyrotomy to get oxygen to the patient?
What is the best way to open a chest for bleeding in the immediate post-open heart period?

What is the most rewarding part of your job?

Seeing people that did not know how to do something not only learn how to do it, but also gain a certain amount of confidence and mastery doing the new task. 

What advice do you have for young people aspiring to have a career in the medical field? 

Do it! My grandfather said that I should either be an obstetrician or an undertaker, that way you can get people either coming or going! If you aspire to go into the healthcare field, explore your options. Becoming a physician or nurse is not your only option to make a meaningful contribution to healthcare. Medical research, especially with the human genome, is really exciting. If I were growing up now, I would probably be fascinated with that. Also, the roles of pharmacists and therapists are frequently overlooked as vital members of the healthcare team. The money should NOT be a factor in your decision. No job is worth getting up every day if you hate going. I love going to my job every single day.

Check out this very exciting presentation "Death-Defying Robots in Medical Education" with Rich Fidler PhD MBA and Abi FitzGerald MSN RN of the VA Medical Center on Wednesday, May 14 7:30 – 8:30 pm, Terra Linda High School, San Rafael, Room 207. 

Read an excellent article about Rich Fidler here 

~Claire Watry


Post a Comment

Popular posts from this blog

"Gnashing, Gnawing, and Grinding: The Science of Teeth" - An Interview with Tesla Monson of UC Berkeley

by Shoshana Harlem, Terra Linda High School

Dr. Tesla Monson studies mammals, especially their skulls and teeth. She is a researcher at UC Berkeley and has a BA in cultural anthropology, an MA in biological anthropology, and PhD in Integrative Biology. 

1. What made you want to study mammals?
Growing up in Washington State, I was always really interested in biological life, and particularly animals and plants. When I first learned about Paleolithic cave art in my undergraduate anthropology class, which is some of the oldest and most beautiful art, dated to more than 30,000 years ago, I became fascinated with the seemingly timeless question, "What makes us human?", "What makes me, me?, "What makes humans unique from other animals?" And "What makes non-human animals different from each other?" Because these questions are focused on trying to place humans within the context of evolution and life on this planet, and because humans are mammals, I have been …

All About Lysosomes

by Angel Zhou, Branson School

Lysosomes, discovered and named by Belgian biologist Christian de Duve, who eventually received the Nobel Prize in Medicine in 1974, are membrane-enclosed organelles that function as the digestive system of the cell, both degrading material taken up from outside the cell and digesting obsolete components of the cell itself. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. In their simplest form, lysosomes are visualized as dense spherical vacuoles, but they can display considerable variation in size and shape as a result of differences in the materials that have been taken up for digestion. Lysosomes contain an array of enzymes capable of breaking down biological polymers, including proteins, nucleic acids, carbohydrates, and lipids.

The lysosome’s enzymes are synthesized in the rough endoplasmic reticulum. The enzymes are released from Golgi apparatus in small vesicles which ultimately fuse with acidic vesicles ca…

Bacteria, Botulism, and Beauty

--> By Talya Klinger, MSS Intern
What do foodborne illnesses, neck dystonia treatments, and celebrities’ beauty regimens have in common? Clostridium botulinum, baratii, and other species of Clostridium bacteria produce all of the above and more. These seemingly innocuous, rod-shaped bacteria, commonly found in soil and in the intestinal tracts of fish and mammals, produce one of the most deadly biological substances: botulinum toxin, a neurotoxin that intercepts neurotransmitters and paralyzes muscles in the disease known as botulism. Nonetheless, botulinum toxin isn’t all bad: this chemical not only protects the bacteria from intense heat and high acidity, but it makes for an effective treatment for medical conditions as wide-ranging as muscle spasms, chronic migraines, and, yes, wrinkles. 

Clostridium botulinum and similar bacteria can make their way into the human body in a number of ways. Wounds infected with Clostridium botulinum or spores ingested by infants can lead to …