Skip to main content

Entering the Medical Field

by Jessica Gerwin, Drake HS

Dr. Art Wallace, who is a cardiac anesthesiologist and the Chief of Anesthesia Service at the San Francisco Veteran Affairs Medical Center (SF VAMC) will be presenting at the Marin Science Seminars this Wednesday. His presentation “Making Medicine Safer”, will explore the vital roles that drugs, devices and software play in modern medicine. I had the opportunity to interview Dr. Wallace and was given insight on how to enter into medical professions. Our interview is below.


  1. Your B.S. was in Engineering and Applied Sciences. Did you start off wanting to be an Engineer?  If so, what first sparked your interest in the field of medicine?
    1. I always wanted to be a doctor. My mother died when I was a young child and this experience focused my interest in medicine with a goal of preventing this problem in others.
    2. I started off in college with a goal to go to medical school but with an interest in physics and engineering as well. Electrical engineering appealed to me, so I majored in Engineering and Applied Science with a focus on electrical and biomedical engineering.
    3. I am fascinated by how stuff works.


  1. What kept you motivated to go through the intensive level of schooling needed to become an anesthesiologist?
    1. I was fascinated by medicine and research.
    2. In medical school, I my girlfriend developed cancer. This second experience with terminal illness drove me even harder to try to find therapies to help patients.
    3. I was driven to invent therapies that save lives.


  1. What makes you excited about going to work everyday?
    1. Providing the best care possible for patients.
    2. Creating the future of medical care. I focus on inventing therapies. Testing therapies. Making therapies better.


  1. What attributes, both teachable and non-teachable, do teenagers need to have to start pursuing a career in medicine?
    1. Fascination with science, medicine, people.
    2. Caring about people.
    3. Desire to understand how stuff works.

  1. What sort of local opportunities should teenagers be looking for?
    1. Exposure to science.
    2. Exposure to medical care – volunteer in a hospital.

  1. Do you feel that teenagers today underestimate what it takes to become a successful?
    1. Teenagers need to realize that it takes a  long time to accomplish something significant. I worked for almost 30 years to become a doctor. Once I was a physician, it took 10 more years to get good at it.
    2. One can master a video game in a week (less than 168 hours). Becoming a doctor takes a minimum of 12 years of work 100 hours a week. That is more than 60,000 hours of work to become a doctor.

  1. What message would you like to give teenagers today about joining the medical field?
    1. It is great. I love it. I can’t imagine a better thing to do with my life.
    2. It takes a lot of work.
    3. Make sure it is something that fascinates you.
    4. There is enormous joy in providing care to patients. They are relieved. They don’t die. They are no longer in pain. It is a tremendous experience to be able to help a patient.
    5. It is a tremendous experience to invent a therapy that prevents morbidity and mortality.



To learn more about recent advances and methodologies in modern medicine, check out our next seminar on October 23rd  featuring Dr. Art Wallace speaking on “Making Medicine Safer with Drugs, Devices, Software and More” The event will take place at Terra Linda High School Room 207 at 7:30 pm. To download the Fall flyer, click here.

Click on the link below for more information about Dr. Wallace


Image credits


-Jessica Gerwin
Post a Comment

Popular posts from this blog

"Gnashing, Gnawing, and Grinding: The Science of Teeth" - An Interview with Tesla Monson of UC Berkeley

by Shoshana Harlem, Terra Linda High School

Dr. Tesla Monson studies mammals, especially their skulls and teeth. She is a researcher at UC Berkeley and has a BA in cultural anthropology, an MA in biological anthropology, and PhD in Integrative Biology. 

1. What made you want to study mammals?
Growing up in Washington State, I was always really interested in biological life, and particularly animals and plants. When I first learned about Paleolithic cave art in my undergraduate anthropology class, which is some of the oldest and most beautiful art, dated to more than 30,000 years ago, I became fascinated with the seemingly timeless question, "What makes us human?", "What makes me, me?, "What makes humans unique from other animals?" And "What makes non-human animals different from each other?" Because these questions are focused on trying to place humans within the context of evolution and life on this planet, and because humans are mammals, I have been …

All About Lysosomes

by Angel Zhou, Branson School

Lysosomes, discovered and named by Belgian biologist Christian de Duve, who eventually received the Nobel Prize in Medicine in 1974, are membrane-enclosed organelles that function as the digestive system of the cell, both degrading material taken up from outside the cell and digesting obsolete components of the cell itself. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. In their simplest form, lysosomes are visualized as dense spherical vacuoles, but they can display considerable variation in size and shape as a result of differences in the materials that have been taken up for digestion. Lysosomes contain an array of enzymes capable of breaking down biological polymers, including proteins, nucleic acids, carbohydrates, and lipids.

The lysosome’s enzymes are synthesized in the rough endoplasmic reticulum. The enzymes are released from Golgi apparatus in small vesicles which ultimately fuse with acidic vesicles ca…

Bacteria, Botulism, and Beauty

--> By Talya Klinger, MSS Intern
What do foodborne illnesses, neck dystonia treatments, and celebrities’ beauty regimens have in common? Clostridium botulinum, baratii, and other species of Clostridium bacteria produce all of the above and more. These seemingly innocuous, rod-shaped bacteria, commonly found in soil and in the intestinal tracts of fish and mammals, produce one of the most deadly biological substances: botulinum toxin, a neurotoxin that intercepts neurotransmitters and paralyzes muscles in the disease known as botulism. Nonetheless, botulinum toxin isn’t all bad: this chemical not only protects the bacteria from intense heat and high acidity, but it makes for an effective treatment for medical conditions as wide-ranging as muscle spasms, chronic migraines, and, yes, wrinkles. 

Clostridium botulinum and similar bacteria can make their way into the human body in a number of ways. Wounds infected with Clostridium botulinum or spores ingested by infants can lead to …