Skip to main content

An Interview with Dr. Maggie Louie

By Zack Griggy, San Marin HS

           Cancer is a widespread problem. The American Cancer Society estimates that this year over 1.6 million Americans will be diagnosed with cancer and another half a million are expected to die from it. Dr. Maggie Louie is an experienced researcher in the fields of cancer. Currently, she runs an active cancer research center that studies breast cancer.

To find out more about Dr. Louie's work and her research, we conducted an interview:

1. How did you first become interested in studying cancer?

I did a medical internship the summer of my junior year in high school and I got to shadow two surgeons.  One of the surgeries that I observed was a 40-year cancer patient undergo double mastectomy.  At the age of 16, just thinking about how breast cancer can take away an organ that partly defines someone's women-hood had a significant effect on me.  At that moment, I became quite interested in cancer.

2. What studies have you conducted in the past? How have they led you to where you are today?

My lab has conducted many studies.  One of the studies that we did was to study how exposure to chronic low-levels of cadmium impacts on progression of the disease.  Our results show that even at low levels, cadmium promotes more aggressive cancer characteristics and alters the gene expression patterns of the cancer cells.

3. How is tamoxifen used to treat breast cancer? How does a tumor develop resistance to it?

Tamoxifen is an estrogen receptor antagonist and blocks estrogen from activating the receptor and promoting breast cancer growth.

 4. How do metals such as cadmium activate estrogen receptors? How might these metals influence the development of a tumor?

Cadmium is a metalloestrogen and is known to bind and activate the estrogen receptor.  It has also been shown to promote breast cancer growth While we know that heavy metals like cadmium promote cancer growth, scientists are still working to understand how it works.

5. What are the best parts of your job? What are the worst?

The best parts of my job are working with students and using research to inspire them to be interested in science.  The less attractive side of my job is that research is very repetitive and redundant, and sometimes you don't see an impact for many years.

6. And finally, do you have any advice for students who aspire to study cancer?

 Students should definitely consider studying cancer as this disease will touch everyone in some way, directly or indirectly, and they will be making a difference.  

Post a Comment

Popular posts from this blog

"Gnashing, Gnawing, and Grinding: The Science of Teeth" - An Interview with Tesla Monson of UC Berkeley

by Shoshana Harlem, Terra Linda High School

Dr. Tesla Monson studies mammals, especially their skulls and teeth. She is a researcher at UC Berkeley and has a BA in cultural anthropology, an MA in biological anthropology, and PhD in Integrative Biology. 

1. What made you want to study mammals?
Growing up in Washington State, I was always really interested in biological life, and particularly animals and plants. When I first learned about Paleolithic cave art in my undergraduate anthropology class, which is some of the oldest and most beautiful art, dated to more than 30,000 years ago, I became fascinated with the seemingly timeless question, "What makes us human?", "What makes me, me?, "What makes humans unique from other animals?" And "What makes non-human animals different from each other?" Because these questions are focused on trying to place humans within the context of evolution and life on this planet, and because humans are mammals, I have been …

All About Lysosomes

by Angel Zhou, Branson School

Lysosomes, discovered and named by Belgian biologist Christian de Duve, who eventually received the Nobel Prize in Medicine in 1974, are membrane-enclosed organelles that function as the digestive system of the cell, both degrading material taken up from outside the cell and digesting obsolete components of the cell itself. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. In their simplest form, lysosomes are visualized as dense spherical vacuoles, but they can display considerable variation in size and shape as a result of differences in the materials that have been taken up for digestion. Lysosomes contain an array of enzymes capable of breaking down biological polymers, including proteins, nucleic acids, carbohydrates, and lipids.

The lysosome’s enzymes are synthesized in the rough endoplasmic reticulum. The enzymes are released from Golgi apparatus in small vesicles which ultimately fuse with acidic vesicles ca…

Bacteria, Botulism, and Beauty

--> By Talya Klinger, MSS Intern
What do foodborne illnesses, neck dystonia treatments, and celebrities’ beauty regimens have in common? Clostridium botulinum, baratii, and other species of Clostridium bacteria produce all of the above and more. These seemingly innocuous, rod-shaped bacteria, commonly found in soil and in the intestinal tracts of fish and mammals, produce one of the most deadly biological substances: botulinum toxin, a neurotoxin that intercepts neurotransmitters and paralyzes muscles in the disease known as botulism. Nonetheless, botulinum toxin isn’t all bad: this chemical not only protects the bacteria from intense heat and high acidity, but it makes for an effective treatment for medical conditions as wide-ranging as muscle spasms, chronic migraines, and, yes, wrinkles. 

Clostridium botulinum and similar bacteria can make their way into the human body in a number of ways. Wounds infected with Clostridium botulinum or spores ingested by infants can lead to …