Skip to main content

The Magic of a New Large Hadron Collier

by Angel Zhou, Branson School

Large Hadron Collider,  Switzerland
This week, the Large Hadron Collider, or LHC, will restart after a two-year hiatus. The pause was intentional, giving technicians and engineers time to ramp up the collision energy intended to push the laws of physics to their limits. 

The LHC, completed in 2008 by the European Organization for Nuclear Research (CERN) at a cost of around $10 billion, is the world's largest particle accelerator: an extremely long underground tunnel that allows physicists to conduct some pretty intense experiments. In essence, these experiment involve shooting beams of particles around the ring, using enormous magnets to speed them up to 99.9999 percent of the speed of light, then crashing them together. Sophisticated sensors capture all sorts of data on the particles that result from these collisions. In particle collisions, the higher the energy, the bigger the payoff, as the energy of the colliding particles gets translated into the masses of the debris, following the E=mc^2 prescription. As particles collide, their energy morphs into a shower of new particles that come flying off from the collision point.

The LHC's biggest finding so far was the discovery of an elementary particle called the Higgs boson. Since the 1960s, the Higgs boson was thought to exist as a part of the Higgs field: an invisible field that permeates all space and exerts a drag on every particle. It had been calculated that after being formed during a collision, the Higgs boson would immediately decay into other particles in a specific ratio. Data collected after protons were crashed together showed evidence of these particles in the ratio predicted. In 2012, after three years of experiments at the LHC, physicists confirmed the Higgs boson does indeed exist. 

Higgs Boson
All the experiments conducted at the LHC so far are part of "run one.” After several years of upgrading the LHC's magnets, which speed up and control the flow of particles, and data sensors, it'll begin "run two": a new series of experiments that will involve crashing particles together with nearly twice as much energy as before. These more powerful collisions will allow scientists to keep discovering new and perhaps larger particles, and also look more closely at the Higgs boson to observe how it behaves under different conditions.

To learn more about the what scientists hope to discover with the updated Large Hadron Collider, such as mini black holes, more higgs bosons, extra dimension, and perhaps, pink elephants, join us on Wednesday, March 25th for Dr. Lauren Tompkins’ seminar, “Extra dimensions, mini black holes and.. Pink Elephants?: Exciting times ahead at the Large Hadron Collider” in Room 207 at Terra Linda High School in San Rafael. For more information, visit Marin Science Seminar's Facebook page:
Post a Comment

Popular posts from this blog

Bacteria, Botulism, and Beauty

--> By Talya Klinger, MSS Intern
What do foodborne illnesses, neck dystonia treatments, and celebrities’ beauty regimens have in common? Clostridium botulinum, baratii, and other species of Clostridium bacteria produce all of the above and more. These seemingly innocuous, rod-shaped bacteria, commonly found in soil and in the intestinal tracts of fish and mammals, produce one of the most deadly biological substances: botulinum toxin, a neurotoxin that intercepts neurotransmitters and paralyzes muscles in the disease known as botulism. Nonetheless, botulinum toxin isn’t all bad: this chemical not only protects the bacteria from intense heat and high acidity, but it makes for an effective treatment for medical conditions as wide-ranging as muscle spasms, chronic migraines, and, yes, wrinkles. 

Clostridium botulinum and similar bacteria can make their way into the human body in a number of ways. Wounds infected with Clostridium botulinum or spores ingested by infants can lead to …

An Interview With Diara Spain, Ph.D

By Rachael Metzger, MSS Intern

Ocean acidification is an issue becoming apparent in the effects on both sea creatures and humans. Diara Spain, the Associate Professor of Biology at Dominican University, came to Marin Science Seminar to talk to us about her studies in marine invertebrates and the damage ocean acidification is causing them. 

To learn more about Diara Spain and what inspired her studies we conducted an interview:

1. How did you get interested in biology? Is there a time, event, 
or person in your life that inspired you to pursue the study? I've always been interested in biology, really science in general. I grew up in rural North Carolina and as a kid it was expected that you'd spend most of your free time outside playing with your friends and pets.  One thing that sparked my interest in marine organisms were the summer vacations at the undeveloped beaches in North Carolina. 
2. Why did you specifically decide to focus on functional morphology, locomotion in echinode…

Invention in Medicine this Wed. 10/26/16

Marin Science Seminar for Teens & Community Presents Invention in Medicine How Medical Devices get Invented and Go to Market with Art Wallace MD PhD of UCSF & VAMC SF
Wednesday, October 26, 2016 7:30 - 8:30 pm Terra Linda High School, Room 207 320 Nova Albion, San Rafael, CA 94903 

Art Wallace started out in experimental surgery and radiology studying imaging of the heart using CT
scanners. He has worked on a number of devices that originally were built for experimental studies that evolved into clinically useful devices including a cardiac output monitor, the off pump CABG, off pump aneurysm surgery, electronic sedation, and a selective coronary vasodialtor. Dr. Wallace will explain his experiences with the inventive process using examples from both device design and drug development. There will be a brief discussion of the importance of intellectual property, patents, venture capital, FDA approval, and business development in completing the invention process. There will …