Monday, October 8, 2012

The Science Right in Your Bloodstream


     There are a lot of words that begin with the prefix ‘bio-.’

     Biology, for instance, and then biochemistry, biotechnology, bionics, biopharmaceutical... the list goes on and on, advancing further afield the deep, often obscure world of biological sciences. 
pH is one of many properties used to analyze chemicals in body fluids.

     And, why shouldn’t it? “Bio” as a prefix means ‘life’, the study of which starts at the very core of our existence. We have been fascinated with everything to do about life: plants, animals, people, and the chemical breakdown of them all. Food chains, weather, evolution, natural selection, and how they all shaped the world we live in today. There’s a lot of “bio” in this world, and a lot of different ways to study it! Some of them we can recognize right off the bat, like biomedical, or zoology. Other fields are a bit more esoteric.

     Take bioanalytics, for instance.

     By parsing the word into two bits, ‘bio’ and ‘analytics,’ it seems bioanalytics is the analysis of life. That’s true, to some extent, but it hardly sheds light on the depths of this exciting field.

     On television, blood is tested for deadly toxins. Before games, athletes are tested for performance-enhancing drugs. The measurement of these xenobiotics, or external/unusual compounds, falls under bioanalysis. 

     Being able to analyze the amount of an active drug, and what it does once within the body, is hugely important to the development of pharmaceuticals. Dosage requirements and limitations take cues from what levels of drug concentration are safe. How often a person can take medication is also dependent on how long a drug stays in the bloodstream. Overdose is a serious threat that can be avoided by analyzing xenobiotics within the body.
Bioanalysis also appears in tests for illicit drug use, forensic science, and anti-doping testing for sports. It presides over the detection of external substances in the body, and how the drug is affected and affecting the body.

Some bioanalytic methods, and fields that use bioanalysis.


     Another part of bioanalytics is immunogenicity risk assessment. Immunogenicity concerns an individual’s immune system, and its genetic-based tendencies toward rejecting or accepting medication. Immunogenicity risk assessment uses bioanalytics to determine whether or not a prescribed drug would be rejected or accepted by a patient’s body. Backfiring medication would only add to the woes of an ill patient.

     As technology advances, so does the development of medicine. The ability to detect and quantify newer, more potent, and thus less concentrated amounts of drugs, has spurred the improvement of bioanalytical technology as well. For example, medicine has progressed from smaller molecules to large chains of biomolecules, a change that demands adaption in the quantifying process as well. As equipment becomes more precise, so does knowledge of drugs, and prevention of their potentially dangerous usage.

     Every advance in medicine comes with the keen reminder that human bodies are comprised of complex, often fragile systems--immune, cardiovascular, respiratory, etcetera. Medicine has done leaps and bounds for the lifespans of entire generations, providing respite from diseases and illnesses that plagued our ancestors. The balance between a drug’s potency and the body’s ability to withstand its foreign influence is crucial to every individual’s well-being. Bioanalytics helps shed light on that balance.

     Join the Marin Science Seminar and Dr. Erik Foehr in exploring this very important aspect of drug development and forensic investigation on Wednesday, October 10. Dr. Foehr, an expert on bioanalysis, will delve deeper into the topic of bioanalysis and its many uses, including measurement techniques, immunogenicity risk assessment, and drug development.

--

Sandra Ning

No comments:

Five Health Challenges that Were Deadly Before Antibiotics

Nola Palestrant, Tamalpais High School      In 1928, Sir Alexander Fleming accidentally discovered humanity’s first antibiotic, Penicillin, ...

About Us

Marin Science Seminar is a one-hour science lecture/presentation with a question and answer period open to all interested local teenagers, educators and community. Seminar sessions are held 12 Wednesday evenings during the school year, from 7:30 to 8:30 pm in the Innovation Hub at Terra Linda High School, 320 Nova Albion Way, San Rafael. Seminar speakers are scientists, mathematicians, engineers, physicians, technologists and computer programmers. The topics presented are in a specific area of the speaker’s expertise, geared to interested high school students.