Skip to main content

The Science Right in Your Bloodstream


     There are a lot of words that begin with the prefix ‘bio-.’

     Biology, for instance, and then biochemistry, biotechnology, bionics, biopharmaceutical... the list goes on and on, advancing further afield the deep, often obscure world of biological sciences. 
pH is one of many properties used to analyze chemicals in body fluids.

     And, why shouldn’t it? “Bio” as a prefix means ‘life’, the study of which starts at the very core of our existence. We have been fascinated with everything to do about life: plants, animals, people, and the chemical breakdown of them all. Food chains, weather, evolution, natural selection, and how they all shaped the world we live in today. There’s a lot of “bio” in this world, and a lot of different ways to study it! Some of them we can recognize right off the bat, like biomedical, or zoology. Other fields are a bit more esoteric.

     Take bioanalytics, for instance.

     By parsing the word into two bits, ‘bio’ and ‘analytics,’ it seems bioanalytics is the analysis of life. That’s true, to some extent, but it hardly sheds light on the depths of this exciting field.

     On television, blood is tested for deadly toxins. Before games, athletes are tested for performance-enhancing drugs. The measurement of these xenobiotics, or external/unusual compounds, falls under bioanalysis. 

     Being able to analyze the amount of an active drug, and what it does once within the body, is hugely important to the development of pharmaceuticals. Dosage requirements and limitations take cues from what levels of drug concentration are safe. How often a person can take medication is also dependent on how long a drug stays in the bloodstream. Overdose is a serious threat that can be avoided by analyzing xenobiotics within the body.
Bioanalysis also appears in tests for illicit drug use, forensic science, and anti-doping testing for sports. It presides over the detection of external substances in the body, and how the drug is affected and affecting the body.

Some bioanalytic methods, and fields that use bioanalysis.


     Another part of bioanalytics is immunogenicity risk assessment. Immunogenicity concerns an individual’s immune system, and its genetic-based tendencies toward rejecting or accepting medication. Immunogenicity risk assessment uses bioanalytics to determine whether or not a prescribed drug would be rejected or accepted by a patient’s body. Backfiring medication would only add to the woes of an ill patient.

     As technology advances, so does the development of medicine. The ability to detect and quantify newer, more potent, and thus less concentrated amounts of drugs, has spurred the improvement of bioanalytical technology as well. For example, medicine has progressed from smaller molecules to large chains of biomolecules, a change that demands adaption in the quantifying process as well. As equipment becomes more precise, so does knowledge of drugs, and prevention of their potentially dangerous usage.

     Every advance in medicine comes with the keen reminder that human bodies are comprised of complex, often fragile systems--immune, cardiovascular, respiratory, etcetera. Medicine has done leaps and bounds for the lifespans of entire generations, providing respite from diseases and illnesses that plagued our ancestors. The balance between a drug’s potency and the body’s ability to withstand its foreign influence is crucial to every individual’s well-being. Bioanalytics helps shed light on that balance.

     Join the Marin Science Seminar and Dr. Erik Foehr in exploring this very important aspect of drug development and forensic investigation on Wednesday, October 10. Dr. Foehr, an expert on bioanalysis, will delve deeper into the topic of bioanalysis and its many uses, including measurement techniques, immunogenicity risk assessment, and drug development.

--

Sandra Ning
Post a Comment

Popular posts from this blog

Invention in Medicine this Wed. 10/26/16

Marin Science Seminar for Teens & Community Presents Invention in Medicine How Medical Devices get Invented and Go to Market with Art Wallace MD PhD of UCSF & VAMC SF
Wednesday, October 26, 2016 7:30 - 8:30 pm Terra Linda High School, Room 207 320 Nova Albion, San Rafael, CA 94903 


Art Wallace started out in experimental surgery and radiology studying imaging of the heart using CT
scanners. He has worked on a number of devices that originally were built for experimental studies that evolved into clinically useful devices including a cardiac output monitor, the off pump CABG, off pump aneurysm surgery, electronic sedation, and a selective coronary vasodialtor. Dr. Wallace will explain his experiences with the inventive process using examples from both device design and drug development. There will be a brief discussion of the importance of intellectual property, patents, venture capital, FDA approval, and business development in completing the invention process. There will …

An Interview With Diara Spain, Ph.D

By Rachael Metzger, MSS Intern

Ocean acidification is an issue becoming apparent in the effects on both sea creatures and humans. Diara Spain, the Associate Professor of Biology at Dominican University, came to Marin Science Seminar to talk to us about her studies in marine invertebrates and the damage ocean acidification is causing them. 

To learn more about Diara Spain and what inspired her studies we conducted an interview:


1. How did you get interested in biology? Is there a time, event, 
or person in your life that inspired you to pursue the study? I've always been interested in biology, really science in general. I grew up in rural North Carolina and as a kid it was expected that you'd spend most of your free time outside playing with your friends and pets.  One thing that sparked my interest in marine organisms were the summer vacations at the undeveloped beaches in North Carolina. 
2. Why did you specifically decide to focus on functional morphology, locomotion in echinode…

Marin Science Seminar Internships Still Available

Marin Science Seminar still has two high school student internship spaces available. Interns must be able to attend science seminars on select Wednesday evenings at Terra Linda High School in San Rafael. Interns arrive at 7 pm to set up, assist with the seminar, and can leave when the seminar is cleaned up by 8:45 pm. Specialties are also available for students interested in writing, photography, videography, and social media.

Start your application online today at this link!
See the calendar here: http://www.marinscienceseminar.com/calendar.html

More information about MSS internships can be found on the website at this link:
http://www.marinscienceseminar.com/interns.html

 Join us and learn!