Tuesday, November 17, 2015

A Tale of Two Tremors: The Nepal Quake and the San Ramon Swarm

by Zack Griggy, San Marin HS

            The earthquake is an awe-inspiring disaster that can occur anywhere at anytime where two tectonic plate contact. Tectonic plates make up most of the Earth's crust and move freely, so they can rub up against, move away from, or compress against other tectonic plates, which results in HUGE amounts of energy. The place where said actions occur are called faults. Earthquakes are the result of rocks along the fault breaking as the faults move. This releases all the pent-up energy from the tectonic plate movement, and results in a tremor. There have been countless earthquakes recorded, but recently, there have been many events in particular that have attracted a large amount of attention in the seismological community, among which include the San Ramon Swarm and last April's Nepal Quake.
Destruction from April's Nepal Earthquake
             Since October 15, the town of San Ramon in Contra Costa County, California has been rattled by more than 200 small earthquakes. Thirty of which occurred over two days. The tremors have been small, the largest to date barely reaching 3.2 on the Richter Scale. According to the US Geological Survey, there have been numerous instances of earthquake "swarms," where numerous earthquakes occur in a close vicinity and in a short period of time. However, the past swarms have occurred over a long period of time, which raised the question of how long this swarm will last. The longest swarm was in the nearby town of Alamo that lasted 42 days with over 350 earthquakes. Residents are concerned about the earthquake swarm but seismologists say that the swarm may be beneficial, because the fault is releasing pent up energy and abating the risk of a large magnitude tremor for years to come.
            However, earthquakes are very capable of wreaking havoc into both the developed and undeveloped world. The recent Nepal Quake of last April is an example of the destructive power earthquakes possess. This quake, centered about 85 miles from Nepal's capital of Kathmandu, was responsible for the death of over 8000 people and the destruction of over half a
A diagram that shows the risk for earthquakes worldwide
million homes. Millions are still in need of humanitarian aid because of this quake and its aftershocks. The quake reached 7.8 on the Richter Scale, which made this tremor more than 800 thousand times stronger than the strongest tremor in the San Ramon Earthquake Swarm. What really raises concerns however, is the realization that a quake like this could happen almost anywhere. According to TIME, the three cities most at risk for a large magnitude earthquake are Tehran, Istanbul, and Los Angeles. These are densely populated cities, and the fallouts of a large earthquake there could be devastating.

1. http://www.ktvu.com/news/east-bay-news/32982571-story
2. http://www.sfgate.com/bayarea/article/Small-earthquake-strikes-in-area-of-recent-swarms-6590014.php#photo-8857844
3. http://www.ga.gov.au/scientific-topics/hazards/earthquake/basics/causes
4. http://time.com/3882272/nepal-earthquake-death-toll-2/
5. http://time.com/3838716/earthquake-risk-nepal/

To learn more about earthquakes and the science behind them, attend Dr. Diego Melgar's presentation on Wednesday, November 15, 2015 from 7:30 - 8:30 at Terra Linda High School, Room 207, 320 Nova Albion Way. 

Saturday, November 14, 2015

Modeling Tsunamis and Monitoring Earthquakes: an Interview with Geophysicist and MSS Speaker Diego Melgar

By Talya Klinger, MSS Intern

How can we meet the computational challenge of modeling and monitoring earthquakes in real time, and how can we anticipate and prepare for natural disasters? Diego Melgar, Ph.D. of the UC Berkeley Seismological Laboratory, is investigating these questions and more. As an assistant researcher, he develops earthquake models and tsunami warning systems using high-rate GPS data, paving the way for better earthquake preparation.

1. How did you first get interested in seismology?

I grew up in Mexico City, where earthquakes, volcanoes, hurricanes and other natural hazards are a fact of life. I've also always liked math and physics, and so, when it was time to go to college and select a program, I looked around and I found a geophysics degree at the National University that studied the Earth and its physics with lots of math. It seemed like a great idea to me!

2. What are some of the most challenging aspects of modeling natural disasters in real-time?

That they are complex and that measurements are sparse. Many things are going on during an earthquake or any other natural hazard, they're really complicated! Saying something about them very quickly with sparse observations and being right about it is a real challenge.

3. How do you go about making tsunami propagation models more efficient?

We run them in parallel on bigger computers. We can now make very detailed models of the tsunami in less than one minute.

4. How does the technique of real-time monitoring impact geological research and natural disaster preparation?

 Basic research allows us to find out what are the laws of physics and chemistry that make earthquakes and other hazards do what they do, it lets us find about what makes the Earth tick. In turn, the more we know about the physics and chemistry of the Earth the more intelligent we can make our warning systems, we can provide more relevant and precise information in shorter periods of time.

5. Tell us about your work in analyzing the magnitude 7.8 earthquake in Nepal: what did you discover about its source?

Nepal was a very interesting event because in spite of the fact that there were thousands of casualties and widespread destruction, it really could have been a lot worse. Given the state of development of the country we could have easily seen 150,000 casualties like we did in Haiti in 2010, but we did not. After some research we learned that part of the reason for this is that the earthquake rupture was very smooth and that smoothness lead to less shaking than we would have expected.

6. Finally, what advice do you have for students who are interested in seismology, geophysics, or signal processing?

Learn physics, learn math, and learn computers. Earth sciences are an incredibly rich field where these tools are really important. But also go outside, go hiking, look at rocks, notice how each one is different and wonder where they came from. The Earth is a beautiful laboratory and we should enjoy it with our minds but we should also go out and experience it.

To find out more, watch Dr. Melgar's Marin Science Seminar presentation on November 18th, 7:30-8:30 pm at Terra Linda High School, Room 207.

Wednesday, October 21, 2015

Angiosperms: How the Disappearance of Bees Put Flowers At Risk

By Zack Griggy, San Marin HS

          Plants are unique organisms. They have unique cell structures, ways of making energy, and reproduction. There are many different kinds of plants, but a category of plants called angiosperms makes up 80% of plants. But some of these angiosperms are at risk, as bees and other pollinators, which are vital to angiosperm reproduction, are disappearing.
         Plant reproduction varies among different kinds of plants in two significant ways. The two distinguishing factors that divide the kingdom Plantae are seeding and flowering. Angiosperms are the only group of plants that makes both flowers and seeds.
The various parts of a flower.
         Flowers are the reproductive system of an angiosperm. In a flower, two structures in particular play a vital role in plant reproduction. These parts are the pistil and stamen of a flower. The pistil consists of the ovary, the style and the stigma. The ovary is a small are in the bulb of the flower where eggs are stored. Atop the ovary is the style, a narrow region of the pistil that elevates the stigma. The stigma is the tip of the pistil that catches pollen and directs it down a tube so it can fertilize an ovule. The stamen consists of anthers and filaments. The anther rests atop a filament, which is a long narrow structure that supports the anther, and produces pollen, which can fertilize ovules in the ovary. The plant uses pollination to move pollen from the stamen to the pistil. However, the anther is not capable of pollinating on its own, as the pistil and anther are separated by a small distance. Something needs to pollenate the flower, whether it be wind or a pollinating insect, for the plant to be able to reproduce.
          Bees are unbelievably important pollinators. According to the Michigan State University, bees play a huge role in the environment by maintaining many plant communities. Many of these pant communities are farmed for food. Most fruits and nuts, along with cotton and alfalfa are maintained by bee populations. We need bees for our food and as our population grows, so will our need for bees. 
          Unfortunately, the bee population has been declining over the past 50 years. The decline of the bee population is due to many causes, including pesticides, colony collapse disorder (in which worker bees leave their queen and a few young and nursing bees), predators, and carnivorous plants. These causes are serious threats to the bee population and therefore a serious threat to us.
          Angiosperms are flowering plants that make up 80% of the plant population. They are at risk because bees, their primary source for pollination are disappearing. This can lead to agricultural problems for humans when bees cannot pollinate all of our crops.


To learn more about the disappearance of bees, attend Dr. Amber Sciligo's research presentation on Wednesday, October 21st at Terra Linda High School, 320 Nova Albion Way, in Room 207 from 7:30 to 8:30. 

Carnivorous Plants

by Jane Casto, Terra Linda High School Freshman

Carnivorous plants is a term often associated with flies and Venus fly traps. There is much more however, to learn about these organisms, and about their complex functions that allow optimal survival and ideal food supply. Scientists have been unraveling the true genius of these plants for years, and even now, breakthroughs are being made in research. To begin, we answer the question: what is a carnivorous plant? 

Carnivorous plants, or insectivorous plants, are plants that have adapted to consuming and digesting insects and other animals. These plants work in a variety of ways based on their species, of which there are 600 known to man. The basic understanding of the makeup of carnivorous plants is uniform throughout the different species. Carnivorous plants have adapted to a low-nutrient environment, making digestion of invertebrates optimal, as it is a low-nutrient energy method of consumption.
the Venus fly trap's deadly leaves, the vibrant trap ready for action

In the example of a Venus fly trap, this ability to digest small insects and organisms is remarkably dependent on the transfer of electrical signaling. According to ScienceLine, "Each trap is actually a modified leaf: a hinged midriB . . which joins two lobes and secretes a sweet sap to attract insects." This modified leaf is constant throughout all carnivorous plants, while the sap it produces varies in color, sweetness, and other qualities. Following the example of a Venus fly trap, the sap can attract virtually any small creature, and thus, the Venus fly trap often digests small frogs along with the usual fly. When the actual trap of the Venus fly trap is open, the red belly is exposed for all invertebrates to see. Once the prey has been attracted to the trap, the lips of the trap, or the lobes, close within one tenth of a second! So how does a plant move so quickly?

The answer is within the lobes of the Venus fly trap, where three or more small hairs lie. These hairs act as sensors, and if something brushes against two of these hairs, or brushes against one hair twice, the lobes of the plant will snap shut within 30 seconds of initial contact.
small hairs on specialized leaf, or lobe, of the Venus fly trap.

The science behind the closing of the trap is in the pressure caused by something brushing against the hair. This mechanical energy is translated into electrical energy, causing a small electrical signal. This electrical signal is enough to open pores within the center of the lobe, which allow water flow between the cells on the surface of the lobe. Thus water is transferred from the inner layers of the cells to the outer layer of the cells. During the transfer of water, the pressure within the lobes is drastically changed, causing the lobes to invert. This is how the effect of the Venus fly trap is achieved. 

These beautiful and deadly plants have a unique way of maintaining survival, and in turn are incredibly interesting to learn about and study. 

More on carnivorous plants and when
insects fall victim to them
during the October 21st seminar,
7:30 - 8:30 P.M.
Terra Linda High School, Room 207
320 Albion Way, San Rafael, CA 94903