Saturday, August 22, 2015

An Interview with Dr. Jenna Judge, Marine Biologist

by Talya Klinger, MSS Intern

Driftwood is a common sight on beaches, but what happens to driftwood when it sinks to the seafloor? Dr. Jenna Judge, a recent doctoral graduate of UC Berkeley’s Department of Integrative Biology, researches evolution and ecology in deep-sea habitats, such as driftwood, as well as hydrothermal vents and sunken whale bones. Her research shows that these unusual substrates host diverse, lively communities shaped by the wood they inhabit. Attend her research presentation at Terra Linda High School, Room 207, from 7:30-8:30 pm on September 9th.


In Dr. Judge’s words:


1.   Why did you decide to become a marine biologist in the first place?

Well, I grew up in the mountains, but I was always interested in nature and science. I also loved the beach when my family would go on camping trips to the coast. However, I really decided to pursue marine biology in high school after learning about extreme deep-sea environments and the strange animals that live there from my AP Biology teacher. From there, I looked for colleges that offered a marine biology major for undergraduates and went to UC Santa Barbara. My interests in the ocean and the deep sea in particular were reinforced with each class I took and especially the semester abroad I spent in Australia doing a marine biology program. At the time, the obvious next step for me to take was to apply to graduate school to pursue a career as a marine biologist. While this route has served me well, I usually advise college students to take some time after graduation to explore options before jumping into graduate school. It is a big decision, and it’s important to have a strong sense of yourself and what you want to get out of an advanced program before choosing a program and an adviser.

2.  How did you decide to research driftwood?

I ended up studying sunken wood as a habitat for deep-sea animals after learning that the communities on wood are similar to other deep-sea ecosystems I was initially interested in, but had been much less studied. These ecosystems were hydrothermal vents (basically deep-sea volcanoes), cold seeps, and whale falls, which I’ll explain more about in my talk. Due to a series of conversations with scientists at the Monterey Bay Aquarium Research Institute, I was given the opportunity to test whether the kind of wood matters in shaping animal communities by sinking a bunch of wood at about 2 miles deep and waiting 2 years to see what happened. You’ll see what happened during my talk.

3.   How does your work on communities that form around driftwood relate to other ecosystems?

The experiment I did on sunken wood showed that, like forests and other terrestrial (land) ecosystems, the immediate habitat can act as a filter that shapes the community that colonizes that habitat. This means that the ocean isn’t just a big bathtub with a soup of organisms floating or swimming through it, but that even on small scales, the complexity of a habitat can significantly affect who decides to settle down there. I see all ecosystems as a connected web across the Earth, and I am especially interested in links between the land and the ocean, like wood, but also how the increase in artificial materials like plastic is affecting marine ecosystems.

4.  What advice do you have for high school students who aspire to be biologists?

Follow your curiosity! Ask questions and read about what interests you to keep learning and following your interests. Reach out to people who are doing things you find interesting. Scientists are always happy to hear from people who appreciate what they are doing, and it will help you learn more about what it might be like to pursue certain career paths. And once you have some ideas, research colleges that will support that passion and allow you to fully explore and develop your passion. You might find that the best program for you isn’t at the “top” university in the state or the country. For me, I was only looking at CA schools, and I was really excited about marine biology. So, I focused on applying to schools that had specific aquatic or marine biology majors like UCSB and UCSC, but I did not bother applying to UC Berkeley or UCLA even though they rank higher overall. I encourage you to find a good fit for your interests (and of course a good personal fit!) when choosing a college, and if you don’t have a clear idea about what you want to pursue (most people don’t, I was unusually focused), take your time. If you are looking to pursue marine biology in particular, here is a good site that lists all the programs across states: http://marinebio.org/marinebio/careers/us-schools/.

5.  One final question: do you have a favorite driftwood-dwelling creature?

My favorite wood-dwelling creatures would have to be limpets, since they are what led me to studying sunken wood in the first place. Limpets are snails that have no coil in their shell and a particular group of them are specialized to live in a wide range of deep-sea habitats, including hydrothermal vents, cold seeps, whale falls, and sunken wood. They also  live on empty shark egg cases, crab carapaces, worm tubes, squid beaks, algal holdfasts, and likely other organic substrates that sink to the bottom. 

Join us Wednesday, September 9th, 2015, 7:30 - 8:30 pm at Terra Linda HS, 320 Nova Albion, San Rafael - Room 207 - to hear Dr. Judge talk about her work.  Link to Dr. Judge's Marin Science Seminar profile. 

Tuesday, July 28, 2015

Internship application period for 2015-2016 now open

Marin Teens! (HS & college age) Want a cool fall internship? Check out Marin Science Seminar internships. You can apply online. http://www.marinscienceseminar.com/interns.html

Apply Online for MSS Internships
Fall 2015 Internship dates: Sept. 9 - Nov. 18
Spring 2016 Internship dates: Feb. 10 - Apr. 13

Explore science & technology, meet scientists and medical professionals, gain experience for your resume and college applications, develop a portfolio! 


JokeMSS interns attend and assist with a minimum of 6 science seminars per academic year (there are 12 per year) during which they meet the speakers and assist with various logistical duties. Sessions take place on Wednesday evenings at Terra Linda High School, Room 207, during the school year. Interns arrive evening of a session at 7 pm and are free to leave once breakdown is completed (between 8:30 and 9 pm).
Interns also assist in researching and creating materials about event topics, creating and distributing outreach materials, social networking and online development of Marin Science Seminar’s mission to attract more students to the fields of science, technology and math. Other than attending MSS sessions, duties will depend on student interests and background. Training is provided for some intern tasks.

Below is a comparison of the internships currently being offered. 

Writing or Photojournalism (Photography & Writing) Videography or Film & Photojournalism
Attend and assist at MSS sessions, 6 Wednesday evenings per semester, 7 - 9pm Attend and assist at MSS sessions, 6 Wednesday evenings per semester, 7 - 9pm
At Terra Linda High School, San Rafael, Room 207 At Terra Linda High School, San Rafael, Room 207
Submit 2 writing samples (plus photo samples for Photojournalism) Submit 2 video samples (plus photo samples for Film & Photojournalism)
Familiarity with basic blogging interfaces (e.g. Tumblr, Blogger, Wordpress) Able to edit video using video editing software
Facebook and/or Instagram familiarity Facebook and/or Instagram familiarity
Training in blogging software provided Recording equipment and SC cards & reader provided


Questions?  Contact us.

Wednesday, April 8, 2015

All About Lysosomes

by Angel Zhou, Branson School


Lysosomes, discovered and named by Belgian biologist Christian de Duve, who eventually received the Nobel Prize in Medicine in 1974, are membrane-enclosed organelles that function as the digestive system of the cell, both degrading material taken up from outside the cell and digesting obsolete components of the cell itself. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. In their simplest form, lysosomes are visualized as dense spherical vacuoles, but they can display considerable variation in size and shape as a result of differences in the materials that have been taken up for digestion. Lysosomes contain an array of enzymes capable of breaking down biological polymers, including proteins, nucleic acids, carbohydrates, and lipids.


The lysosome’s enzymes are synthesized in the rough endoplasmic reticulum. The enzymes are released from Golgi apparatus in small vesicles which ultimately fuse with acidic vesicles called endosomes, thus becoming full lysosomes. Lysosomes are interlinked with three intracellular processes, namely phagocytosis, endocytosis and autophagy. Extracellular materials such as microorganisms taken up by phagocytosis, macromolecules by endocytosis, and unwanted cell organelles are fused with lysosomes in which they are broken down to their basic molecules.



Synthesis of lysosomal enzymes is controlled by nuclear genes. Mutations in the genes for these enzymes are responsible for more than 30 different human genetic diseases, which are collectively known as lysosomal storage diseases (LSD). The group of genetically inherited disorders are a type of inborn errors of metabolism caused by malfunction of one of the enzymes. The rate of incidence is estimated to be 1 in 5,000 live births. The primary cause is deficiency of an acidic hydrolase, a hydrolase which functions best in acidic environments. The initial effect of such disorders is accumulation of specific macromolecules or monomeric compounds, affecting the brain, viscera, bone and cartilage the most drastically.


To learn more about how lysosomes can communicate with the rest of the cell to act as recycling centers of cellular waste material in good times and about how lysosomes can act as overly-filled, toxic trash cans in bad times, contributing to cell death and the onset of disease, join us this Wednesday, April 7th for this week's Marin Science Seminar “Let's Learn About Lysosomes" with Gouri Yogalingam, Ph.D. of the BioMarin in Room 207 at Terra Linda High School in San Rafael. 

Tuesday, March 31, 2015

Interview with Dr. Katie Ferris of UC Berkeley

by Angel Zhou, Branson School

Monkey Flower 

Monkey flowers and mice - two radically different things. Yet, biologists, like Dr. Katie Ferris, are studying how native monkey flowers and mice have adapted to drastically different environments. 

Dr. Ferris currently works with Dr. Michael Nachman at UC Berkeley, using genetic sequencing and samples of monkey flowers and mice to show how organisms are often adapted to their local environment and that these adaptations are genetically based. 

To learn more about Dr. Ferris and her work with Monkey flowers and mice, read the following interview:

1) How did you decide to enter your field of work?
I decided to become a biologist pretty early on in life. When I was little I loved being outside and interacting with the natural world, especially with plants. Because of my attraction to plants I often got in trouble for picking flowers in my mother's garden. When I was three years old I picked off every single bright green new hosta lily shoot that popped out of the earth. My mother was furious that I had laid waste to her hostas. After she calmed down a little she told me that when I grew up I should be a botanist because then I could pick any plant that I wanted without getting in trouble. The notion stuck and I pursued biology throughout high school and into college. In college I got a job in a lab that studied plant evolutionary genetics and learned a lot of new and exciting things through doing my own research. That experience is how I became interested in my current field of the genetics of adaptation in wild organisms.

2) Describe your typical day at work as a geneticist. What are the best parts of your job? What are the worst parts?
My typical day at work involves several different kinds of activities, which is something I like. Typically I will attend a scientific talk on something related to my interests, do hands-on work with mice (or monkey flowers in my former job), spend an hour or two doing molecular biology in a wet lab and of course spend a little time working on my computer analyzing data or reading scientific papers. The work with animals and in the wet lab usually involved working with undergraduate students who volunteer in the lab in order to participate in research. Some of the best parts of my job are getting to work with students and trying to spread my love of biology and scientific research. I also enjoy the precious and satisfaction of laboratory work and the personalities of the mice. The worst part of my job is when I have to spend a lot of time dissecting dead mice. I did not go into medicine for a reason :)

3) How did you decide to study monkey flowers and wild mice specifically? What conclusions have you drawn thus far in your research?
I decided to study monkey flowers when I was interviewing for graduate school. I visited a lot of different labs that studied plants, but the monkey flowers were by far the most captivating. They are bright yellow, happy little things and closely related species live in an incredible range of different environments from old copper mine tailings to salty coastal sand dunes. They are just really cool plants. I became interested in wild mice because of the work my post-doc advisor had done on the genetics of mouse coloration. He found the genetic changes that caused light colored desert mice to become dark when they lived on black rock outcrops. The mice that live on the dark rocks can then blend in to their surroundings and are less likely to be eaten by predators. I like making hypotheses more than drawing conclusions, but I would say that the main conclusion I have drawn from my research so far is that organisms are often adapted to their local environment and that these adaptations are genetically based. I have also concluded that biology is very complicated 

4) What is your ultimate goal in studying the genetics of adaption and speciation?
My ultimate goal in studying the genetics of adaptation and speciation is to understand better how the world around us works. I want to understand which genes are involved in important traits and if the same genes are used repeatedly to evolve the same traits in different organisms. In short, I want to know if the genetic basis of adaptation is predictable in any way. I also just generally want to contribute new knowledge to the scientific community. A better understanding of the genetic basis of ecologically important traits like drought tolerance or coat color can also be used by scientists in applied field to help improve agriculture or medicine. 

Dr. Katie Ferris, UC Berkley

To learn more about the genes and species’ adaptation to extreme environments, join us on Wednesday, April 1st for Dr. Katie Ferris’ seminar, “From Monkey Flowers to Wild Mice: A Tale of Genes, Adaptation and Extreme Environments” in Room 207 at Terra Linda High School in San Rafael. For more information, visit Marin Science Seminar's Facebook page: https://www.facebook.com/events/850586588342167/