Wednesday, October 8, 2014

Saving Our Ocean Friends

by MSS Intern Isobel Wright, Tamalpais High School

From sea lions with cancer to stranded motherless seal pups, Dr. Claire Simeone knows just what to do. Dr. Simeone works as a Conservation Medicine Veterinarian at The Marine Mammal Center in Sausalito, California and at the National Marine Fisheries Service in Washington, DC. In addition to tending to sick animals, she travels the world to attend Unusual Mortality Events, international training programs, and works on the Marine Mammal Health Map. Dr. Simeone attended the University of Maryland College Park to receive her BSc in Physiology and Neurobiology, and graduated from veterinary school at Virginia Tech. Read the following interview to learn more about life at the Marine Mammal Center and working with animals. 

Claire Simeone, DVM

            Could you walk me through your typical day at The Marine Mammal Center?

One of the best things about working at The Marine Mammal Center is that every day is different. Some days, you’re caring for harbor seal pups that have been separated from their mother. Another day, you’re treating California sea lions with cancer. You might be medicating elephant seals that are dying of lungworms. Some days, you’re treating all of those animals, plus caring for the two hundred additional animals that are ALSO onsite. 

As a veterinarian, I usually start my day walking around the pens to check in on all of the animals on-site, and then our team starts procedures, which include blood draws, x-rays, and surgeries. If animals die, we perform post-mortem exams to determine why they died. At the same time, our volunteer crews (more than 1,000 committed people!) are preparing fish, feeding the animals, and cleaning their pens. Our night volunteer crews take care of the animals into the night, and the veterinarians and technicians are on-call 24 hours a day to make sure all of the animals receive the care they need.

What are the best and worst parts of your job?

There are so many best parts of my job. First, I’m lucky to be able to travel around the world to care for marine mammals and learn more about them. Second, I really feel that I’m making a difference with the work I’m doing – whether it’s saving a seal pup or training the next generation of marine mammal veterinarians. Third, I’m constantly learning new things – about marine mammals, their habitats, and what affects their health. 

Because I do work with animals, a difficult part of the job can be seeing animals that are suffering, often because of things humans do – but it helps to know that we are doing everything we can to bring that animal back to health.

What does it feel like to rescue an animal?

Imagine getting a call from someone who was on vacation, and saw a California sea lion that had fishing line around his neck. First, you feel focused – you take down the description of the animal from the citizen, check your maps, and plan out your strategy. Your rescue volunteers have confirmed that this animal is one you’ve been watching for months, and he’s asleep on the beach. You load up the truck, and make the drive to meet your team. You feel hopeful – he’s still snoring away. Holding your breath, you sneak up slowly, and then with a leap you throw the net over his head. He roars as he jumps up and finds himself trapped. With swift action your team boards him into a carrier, and as stealthily as you came, you load him into the truck. You feel elated as you watch him resting calmly on the way home. 

After a quick procedure to remove the line, it’s clear his wound will heal on its own, and he’s ready to go back to the ocean. After driving him back to the beach, you open the carrier, and he strides out into the waves and dives under the break. You feel proud that you’ve saved this animal’s life, and returned him to his ocean home. 

What’s the most common injury/disease you see in marine mammals? How can we prevent this?

Unfortunately, we commonly see injuries that are due to something called human interaction – entangled in fishing line, nets, or plastic packing straps; ingesting pieces of plastic; struck by a boat; or gunshot. In 1972 the Marine Mammal Protection Act was passed, making it illegal to harass or harm a marine mammal. However, many marine mammals are still harmed in passive ways from our trash or discarded items. You can prevent these entanglements by properly disposing of plastics, and helping to keep beaches clean by picking up any trash you see. Just a few weeks ago the annual International Coastal Cleanup Day brought 54,000 volunteers to California’s coasts. They removed over 680,000 pounds of trash in one day!

What level of education and experience do you need to obtain a job like yours?

As a veterinarian, I have a bachelor’s degree, as well as a DVM – Doctor of Veterinary Medicine. However, there are many ways that you can be involved with marine mammals or ocean conservation – through a Master’s or PhD, if you’re more science-focused, or you can have a completely unrelated career, and get your fill through volunteering at a facility like TMMC. We even have a Youth Crew volunteer program for teenagers 15-18 years old (learn more at http://www.marinemammalcenter.org/Get-Involved/volunteer/youth-crew ). As far as experiences go, I would recommend doing as much as you can to get a variety of experiences, which will help you decide what is really right for you. I’ve worked with dogs and cats, horses and cattle, birds and seals, and each experience set me up for the next step in my career. 

What have you learned from working with these animals?

I’ve learned that in order to conserve energy while diving, some seals can lower their heart rate to 10 beats per minute, and right before they surface, their body speeds the rate back up to 120. I’ve learned that a sea otter, if left alone, will unscrew all of the screws on a drain – that were placed with an electric drill! – with its bare paws. And I’ve learned that a harbor seal, blind from cataracts, can find fish by sensing the water movement with its vibrissae (whiskers). Each one of our patients has given me great stories with which to share the knowledge I’ve learned. 

What is an Unusual Mortality Event? What is it like to attend one? Tell me about the most recent one you attended? 

If a group of marine mammals are sick, they may strand on the beach near one another. Unusual Mortality Events (UMEs) are declared when the number of sick or dying animals is larger than expected in that area or time frame. A panel of experts is then called to lead a response to care for the animals, and to try to figure out why they are dying. A recent UME was close to home – in 2013, more than 1500 starving California sea lion pups washed up on southern California beaches. Thanks to the UME response team, it was determined that the reason the pups were starving was because the fish their moms were feeding on had moved farther offshore – meaning they had to go farther to forage. This caused moms to either lack the milk they needed to nurse them, or abandon their pups completely. Caring for hundreds of sea lion pups at a time is exhausting – most need to eat 3-4 times a day, and they may need treatment for vomiting, diarrhea, or pneumonia. It was thanks to hard-working rehabilitation centers, like TMMC, all along the California coast, that we were able to save so many pups. 

What is the Marine Mammal Health Map? How do you contribute to it?

Think about all of the animals we’ve talked about – starving sea lions, entangled elephant seals, gunshot animals or animals with cancer. Each one of these animals provides a unique look at what is happening in the ocean at that location. All of the animals that come through TMMC have a record with all of their health information. Similarly, all of the stranding centers across the country have records on all of their animals. However, there is no centralized database to collect these data, or display them for all to see. The Marine Mammal Health Map will be that space – so that biologists, veterinarians, and members of the public will know what’s happening to marine mammals in their area. I’m working with scientists from around the country to develop the Health Map and ensure that all of our marine mammals are represented. You’ll have to come to the talk to learn more!

Watch this video below to see the process of the rescuing, rehabilitation and release of a sea lion...


Join us for "Sick Seals and Seizing Sea Lions: What Marine Mammals Can Tell Us About the Health of Our Oceans" with Claire Simeone DVM of The Marine Mammal Center, Sausalito - Wednesday, October 8th, 2014 at Marin Science Seminar

Monday, September 1, 2014

Internship Oppotunities now Available

Marin Science Seminar offers student internships in Science Journalism (Writing) and Videography.  Computer Programming Education internships (using Scratch) are also available through Plumsite. All internship information for the 2014-2015 school year can be found at Marin Science Seminar's Internship Page.

Deadline for application: Friday, September 12th, 2014.

Public school students may apply for the School to Career internship and Work Readiness Certificate program.  Contact your school's College and Career Center for details.

Join us and Learn! :-}




Wednesday, May 21, 2014

Mission Control with Jay Trimble

by Gillian Parker, Tamalpais HS         

Have you ever wondered what happens down at mission control? Who supports astronauts from below? Jay Trimble leads the User Centered Technology Group at NASA Ames Research Center (NASA-Ames Website). The UCT Group is a collection of people with various specialties from  anthropology to computer science that work together to create software for mission control. Jay also led another team called Mars Exploration Rover Human Centered Computing Project, which worked on Mar Rover Operations. Read the following interview with Jay Trimble to find out more about mission control.

Jay Trimble

1. What are some of the projects that the User Centered Technology (UCT) Group at NASA Ames Research Center has worked on?
The UCT Group has focused on component software that allows users to build their own software with compositions, meaning users can essentially assemble their own software using drag and drop. The software is open source, it’s called Open Mission Control Technologies. You can learn more about the software at http://ti.arc.nasa.gov/OpenMCT/, or on GitHub at https://github.com/nasa/mct. The UCT group has also built software to assist scientist in archiving planetary science data. 

2. What is the process of making software at the UCT Group like?
The process for making software is focused on the users. We use a range of methods to connect with users and translate what we’ve learned into the design of the software. We observe users doing their work in their own environment. This is important because observing users gives you a perspective that you won’t get by talking to them, though talking to users is also important. We interview users as well to better understand their work. We develop prototypes and iteratively improve them. Ideas are communicated and tested visually before committing to code. 

3. How did the Mars Exploration Rover Human Centered Computing Project improve the process and technology of Mars Rover Operations?
For Mars Rover Operations we worked with the Jet Propulsion Lab (JPL). We were part of a team looking at science processes. We developed software that ran on large touch screens that allowed the scientists to plan several days out what they wanted to be doing. 

4. What are your favorite/ least favorite parts of your job?
My favorite parts of my job are being part of space exploration and the people I work with. My least favorite part of the job is the uncertainty of the federal budget process. 

5. What do you see in the future of the UCT Group, and space-related technology in general?
That’s a very broad question. My group is working on a Lunar Rover Mission to conduct surface exploration in polar regions to prospect for water and other resources. That’s our focus at the moment. We are also continuing to work with JPL on software for monitoring solar system exploration spacecraft. I think space technology in general in focused on moving us beyond low Earth orbit and out into the solar system. 

6. How did you decide your career path?
I decided my career path based on my interest in the space program that began in grade school when we were landing on the Moon. 

Come to the Marin Science Seminar on Wednesday May 21 at Terra Linda High School, San Rafael; Physiology Lab 207 from 7:30-8:30 to learn more

Monday, May 19, 2014

NASA in the Silicon Valley: An Introduction to the NASA Ames Research Center

by Claire Watry, Terra Linda HS

Located in the heart of the Silicon Valley, the NASA Ames Research Center is one of ten NASA field centers across the country. The Ames Research Center has been a leader in space research and development for over 60 years. It was established in December of 1939 as part of the National Advisory Committee for Aeronautics and was absorbed into NASA in 1958. The Ames Research Center currently employees 2,500 people and contributes $1.3 billion annually to the U.S. economy. It is involved in a variety of fields and a multitude of areas of ingenuity, lists of which can be seen below.


Ames' Key Goals are as followed:


Just out the video below for a more thorough overview of the Ames Research Center or check out the official NASA Ames Research Center YouTube channel 



The focus of the presentation will be on the Human Factors Area of Ames Ingenuity. The human factors area involves "advancing human-technology interaction for NASA missions." The human factors research is currently conducted by over 150 researchers in more than 20 labs to improve safety, efficiency, and mission success. The rapid advancement of new technology requires humans to make competent, critical decisions in a complex, technological environment. Human factors studies the interaction between humans and engineering systems to ensure safe, effective, and cost-effective operations, maintenance, and training. Ames human factors encompasses a wide range of projects from simple visual perception and motor control to the more complex areas flight deck design and crew operational procedures. One of the featured examples involves placing human subjects in a centrifuge to simulate the vibration and enhanced g-forces experienced during launch and measured the subjects' gaze stabilization reflexes, eye-movement reaction-time, accuracy, and precision, and hand-movement reaction-time, accuracy, and precision. Ames human factors includes research and development in the following areas:


  • Human-Machine Interaction improves NASA software through careful application of human computer interface methods.
  • Human Performance: develops new technologies, human performance models and evaluation tools to enhance human productivity and safety for both space and aviation environments.
  • Integration and Training: develops and evaluates methodologies to integrate human factors principles and improve aviation capacity, safety and training.
  • Intelligent Systems: conducts user-centered computational sciences research.
  • Aviation Systems: conducts research and development in air traffic management and high-fidelity flight simulation.                                              (From the NASA-Ames human factors website)


 A subject being prepared for an advanced controls and displays studies (left); a Human Computer Simulation Lab (right)



Join us this Wednesday, May 21 for this week's Marin Science Seminar "This is Mission Control" with Jay Trimble of NASA-Ames in room 207 of Terra Linda High School in San Rafael.

~Claire Watry